

Tymoteusz Ciuk, PhD

Łukasiewicz Research Network

Institute of Microelectronics and Photonics, Warsaw, Poland

Graphene Week 2023

Graphene on Silicon Carbide Platform

for Magnetic Field Detection

under Extreme Temperature Conditions

and Neutron Radiation

Graphene on Silicon Carbide Platform

for Magnetic Field Detection

under Extreme Temperature Conditions

and Neutron Radiation

Thermal stability of transport properties

Two-dimensional character Why graphene on SiC? Hole mobility up to 5000 cm²/Vs

Fixed hole concentration

Graphene Week 2023

Epitaxy: Chemical Vapor Deposition (CVD)

Carbon source: methane or propane

Substrate: 4H-SiC(0001) or 6H-SiC(0001)

Type: semi-insulating on-axis

Dimensions: 20 mm x 20 mm

dx.doi.org/10.1016/j.carbon.2015.06.032 dx.doi.org/10.1016/j.carbon.2016.01.093

Hydrogen intercalation: quasi-free-standing graphene

Spontaneous polarization vector: P₀

Surface-bound pseudo charge: P₀/e

Reflected in QFS graphene as: -P₀/e

doi.org/10.1016/j.apsusc.2020.148668

Graphene Week 2023 Sept

Hydrogen intercalation: quasi-free-standing graphene

```
On 4H-SiC(0001): p = +1.2 E13 cm^{-2}
```

On 6H-SiC(0001): $p = +7.5 E12 cm^{-2}$

doi.org/10.1016/j.apsusc.2020.148668

Graphene Week 2023 Septemb

Basis: signal intensity attenuation

Implementation: shadow cast on LO 964 cm⁻¹

Number of layers N: fractional and statistical

Alternative to: 2D width, 2D-to-G ratio

Provident beam
Incident beam
Incident beam
Incident beam
Incident beam
Incident
Incident
Incident
Incident
Incident

Schematic diagram of the measurement principle

doi.org/10.1016/j.physe.2021.114853 doi.org/10.1016/j.apsusc.2022.155054

Graphene Week 2023

Graphene on Silicon Carbide Platform

for Magnetic Field Detection

under Extreme Temperature Conditions

and Neutron Radiation

Principle of operation: classical Hall effect

Configuration: van der Pauw

Active area: equal-arm cross 100 µm x 300 µm

Total dimensions: 1.4 mm x 1.4 mm

doi.org/10.1016/j.carbon.2018.07.049

Graphene Week 2023

Input: direct current

Output: offset voltage + Hall voltage

Graphene Week 2023

Passivation: aluminum oxide

Process: atomic layer deposition

Precursors: TMA and DI

Purpose: environmental protection

doi.org/10.1016/j.physe.2022.115264

Graphene Week 2023

Phenomenon: passivation-enhanced Raman spectroscopy

Positive interference: 85 nm

Stoichiometry: oxygen deficiency

Passivation thickness: 100 nm

doi.org/10.1063/5.0082694

Graphene Week 2023

100-nm *a*-Al2O3: excess positive charge On 4H-SiC(0001): $p = +7.5 E12 \text{ cm}^{-2}$

On 6H-SiC(0001): $p = +4.6 E12 cm^{-2}$

doi.org/10.1016/j.apsusc.2020.148668

Graphene Week 2023 September 7, 2023

doi.org/10.1016/j.physe.2021.114853

Graphene Week 2023

Mounting: custom holders

Feed current: < 10 mA

Magnetic induction: 0.55 T

Temperatures: up to 500 °C

10.1109/TED.2019.2915632

Graphene Week 2023

Graphene on Silicon Carbide Platform

for Magnetic Field Detection

under Extreme Temperature Conditions

and Neutron Radiation

Current-mode sensitivity:
$$\frac{dU_{Hall}}{dB}/I$$

Expressed in: V/AT

Inversely proportional to: hole density

Temperature [°C]

www.researchgate.net/profile/Tymoteusz-Ciuk/publications

Graphene Week 2023

and Photonics

Temperature T [°C]

-200 -100 Π 100 200 300 400 500 160 140 6H-SiC sensitivity [V/AT] 120 Current-mode 100 4H-SiC 80 60 0 100 200 300 400 500 600 700 800 Temperature [K]

Characteristic down-bending: >300 °C

Physical degradation: No

Fully reversible: Yes

Possible hallmark: Yes

www.researchgate.net/profile/Tymoteusz-Ciuk/publications

Graphene Week 2023

September 7, 2023

Temperature [°C]

Double-carrier transport: holes in QFS graphene and thermally-activated electrons emitted in the bulk of the semi-insulating 6H-SiC(0001) and 4H-SiC(0001)

Graphene Week 2023

Double-carrier transport: holes in QFS graphene and thermally-activated electrons emitted in the bulk of the semi-insulating 6H-SiC(0001) and 4H-SiC(0001)

Graphene Week 2023

Graphene on **Defect-engineered** Silicon Carbide Platform

for Magnetic Field Detection

under Extreme Temperature Conditions

and Neutron Radiation

As revealed by High-Resolution Photo-Induced Transient Spectroscopy (**HRPITS**)

SI vanadium-compensated 6H-SiC has 9 trap levels

SI HP intrinsically-compensated 4H-SiC has 17 trap levels

Pre-epitaxially modify the semi-insulating high-purity 4H-SiC by **implanting hydrogen (H**⁺**)** or **helium (He**⁺**) ions**

Graphene Week 2023

Pre-epitaxial bombardment: H⁺ and He⁺ ions

Energies: 20 keV - 50 keV

Effect: elimination of deep electron traps related to silicon vacancies in the charge state (2-/-) occupying the *h* and *k* sites of the 4H-SiC lattice

T5_{4H}: $E_a = 708 \text{ meV}$ **T6_{4H}:** $E_a = 753 \text{ meV}$

Graphene Week 2023

Graphene Week 2023

Graphene Week 2023

Platform: 4H-SiC

Type: Defect-engineered

Thermal stability: -0.03 %/K

End temperature*: 500 °C

Advantage: linear, without characteristic downward bending

Graphene Week 2023

Graphene on Silicon Carbide Platform

for Magnetic Field Detection

under Extreme Temperature Conditions

and Neutron Radiation

Completed and published:

```
Fast neutron fluence of 6.7 E17 cm<sup>-2</sup> (peak at 1 MeV)
```

Completed not yet published:

Fast neutron fluence of **2.0 E18** cm⁻² (peak at 1 MeV)

Fast neutron fluence of 4.0 E18 cm⁻² (peak at 1 MeV)

Experiment in MARIA reactor: fast neutron fluence of 6.7 E17 cm⁻² (peak at 1 MeV)

Estimated defect density: 4 E10 cm⁻² (low cross-section)

doi.org/10.1016/j.apsusc.2022.152992 doi.org/10.3390/s22145258

Graphene Week 2023

Material composition: Al2O3/QFS-graphene/SiC(0001)

Competitive advantages:

- operates up to 500 °C and possibly beyond
- largely resistant to neutron irradiation

Potential application: magnetic diagnostics in fusion reactors

Do not hesitate to contact us for validation-oriented cooperation!

Graphene Week 2023

THANK YOU FOR YOUR ATTENTION!

The research leading to these results has received funding from:

- National Science Centre under Grant Agreement No. OPUS 2019/33/B/ST3/02677

- M-ERA.NET3 under Grant Agreement MERA.NET3/2021/83/I4BAGS/2022

Tymoteusz Ciuk, PhD

NATIONAL SCIENCE CENTRE

nstitute of Microelectronics and Photonics

Graphene Week 2023

References in order of appearance

10.1016/j.carbon.2015.06.032 Statistics of epitaxial graphene for Hall effect sensors

10.1016/j.carbon.2016.01.093 Charge carrier concentration and offset voltage in quasi-free-standing monolayer chemical vapor deposition graphene on SiC

10.1016/j.apsusc.2020.148668 The impact of partial H intercalation on the quasi-free-standing properties of graphene on SiC(0001)

10.1016/j.physe.2021.114853 Determining the number of graphene layers based on Raman response of the SiC substrate

10.1016/j.apsusc.2022.155054 Layer-resolved Raman imaging and analysis of parasitic ad-layers in transferred graphene

10.1016/j.carbon.2018.07.049 Thermally activated double-carrier transport in epitaxial graphene on vanadium-compensated 6H-SiC as revealed by Hall effect measurements

10.1016/j.physe.2022.115264 Contamination-induced inhomogeneity of noise sources distribution in Al2O3-passivated quasi-free-standing graphene on 4H-SiC(0001)

10.1063/5.0082694 Enhancement of graphene-related and substrate-related Raman modes through dielectric layer deposition

10.1109/TED.2019.2915632 High-Temperature Hall Effect Sensor Based on Epitaxial Graphene on High-Purity Semiinsulating 4H-SiC

10.1016/j.apsusc.2022.152992 Graphene on SiC as a promising platform for magnetic field detection under neutron irradiation

10.3390/s22145258 The Comparison of InSb-Based Thin Films and Graphene on SiC for Magnetic Diagnostics under Extreme Conditions

