

FDTD modeling of microwave power applicators

Bartek Salski¹, Marzena Olszewska-Placha²

¹Warsaw University of Technology, Warsaw, Poland, ²QWED Sp. z o.o., Warsaw, Poland

Acknowledgements

The **microwave applicator for asphalt pavements** presented herein has been designed within the NGAM project <u>https://qwed.eu/ngam2.html</u>

co-funded by the Polish National Centre for Research and Development under Applied Research Programme PBS2/B3/19/2013 NGAM2 contract.

The FDTD modeling presented herein has been performed with multiphysics regimes of QuickWave[™] software by QWED, see:

- commercial & trial licences: <u>https://qwed.eu/qw_trial.php</u>

- Open Platform versions: <u>https://qwed.eu/nanobat.html</u> Horizon 2020

The microwave material characterization techniques presented herein

are being further developed within the European projects:

- H2020 NanoBat receiving funding from the European Union's

Horizon 2020 research and innovation programme under grant agreement No 861962,

- M-ERA.NET ULTCC6G_EPac co-funded by the Polish National Centre

for Research and Development under M-ERA.NET2/2020/1/2021 contract.

Outline

- Microwave treatment of asphalt pavements
- Microwave recycling of waste tires
- Conclusion

Asphalt pavements

- Longitudinal cracks in asphalt roads due to:
 - atmospheric conditions
 - road processing cycle
- Low effectiveness and repeatability of typical thermal bonding process

Materials

Measurements undertaken with cavity resonators.

Basalt aggregates: $\varepsilon_r = 4.05$, $tan\delta = 0.165$ @ 2.45GHz

- WR-340 waveguide with an oblique horn (for impedance matching)
- Polycarbonate cover ($\varepsilon_r = 2.8$, tan $\delta = 0.00554$ @ 3GHz)
- 2-stub tuner
- Choke with cylindrical stubs in a hexagonal lattice
- 3-layer road model

Parameter	Basaltic aggregate	Limestone aggregate
Surface course $(\varepsilon_{rl}/\tan \delta_l)$	6.5 / 0.052	6.3 / 0.0049
Binder course (ε_{r2} /tan δ_2)	6.5 / 0.026	6.3 / 0.0024
Base course (ε_{r3} /tan δ_3)	6.5 / 0.0	6.3 / 0.0

FDTD model

- Performed with FDTD (QuickWave-3D)
- FDTD cell size: >1.3 mm
- 9.4 milion FDTD cells
- 779 MB RAM
- 26 seconds

EM fields

- 50% of delivered power is dissipated in 3 asphalt layers
- ... 31% in the surface course
- ... $\eta = 13.5\%$ directly under the horn
- Shielding effectiveness of chokes: >40 dB
- $P_{rad} = 1.5 W$ for $P_{in} = 30 kW$
- 120 mW/m² at 1m distance

With chokes

Thermal simulation

- Performed with FDTD (QuickWave-BHM)
- 15 minutes of heating with 1kW of mean available power
- Heating area: 60 x 70 cm² = = 0.42 m²
- Linear increase of temperature up to 196 ⁰C
- Heating rate: 4.75 °C/min for basaltic aggregates

Prototype

Portable applicator developed for tests on site with one waveguide horn

Impedance matching

- 1kW magnetron 2M244-M16 (2.46 ± 0.01GHz)
- |S₁₁| < -23dB in magnetron's operating range
- Ripples are due to 1.5m-long cables

Exposure levels

- Magnetron bandwidth: 10 MHz
- Front exposure ca. 9x smaller than side exposure
- EC recommendation: 10 W/m² (61 V/m)
- Power can be safely increased up to 30 kW and beyond

Thermal signatures

1. Max heating rates:

AC22B - 16.4 °C/min

AC22W - 0.8 °C/min

2. Increase of power from 1kW up to 14.25kW for AC22W would have made the heating rates equal.

3. Good agreement with FDTD (AC22B)

AC22B – asphalt with basalt aggregates AC22W – asphalt with limestone aggregates

On site testing

Heating speed (P_{in} = 7 kW, ΔT = 100 °C):

AC22B – 1 meter/min

AC22W – 0.1 meter/min

Before exposure

After exposure

Conclusion

- Microwave treatment of asphalt pavements has to be calibrated to a given type of aggregates (basalt vs. limestone)
- Heating rate: 16.4 ^oC/min/kW for basalt and 0.8 ^oC/min/kW for limestone
- Exposure to high-power MW radiation bonds asphalt cracks across the whole thickness of the pavement

Waste tires

• Goal: tire devulcanization

(recycling of rubber, carbon, sulphur and other compounds)

- Estimation: 1-2 billion tires disposed every year
- Expected throughput: 200 kg/h
- Source type: low-cost magnetrons

www.recyclechina.com

www.cleveland.com

Power budget – heating stage

CAR TIRE COMPOSITION

3	CB	NR	SR	S
Vol. fraction, v _f , %	28.0	14.0	27.0	10.0
	(35.4)	(17.7)	(34.2)	(12.7)
Density , ρ , g/cm ³	12	0.91	1.5	7.5
Spec. heat, C, J/g/K	0.7	2.0	2.0	0.49

if other components

are neglected

CB – carbon black, NR – natural rubber,

SR - synthetic rubber, S - sulphur

Input data

throughput = 200 kg/h temperature rise: $400 - 20 = 380 \ ^{\circ}C$ volume fraction of scrap tires: $v_f = 30\%$

 $P_h = 20.9kW$ of microwave power is needed to heat

a 2.5 x 1.0 x 0.3 m³ volume of scrap tires by 380 $^{\circ}$ C

during 26 minutes of microwave processing

Power budget – dissociation stage Input data

- Dissociation temperature of sulphur-sulphur and carbon-sulphur bonds: 400 °C
- Sulphur mass content is assumed to $m_s = 2.5\%$
- The same amount of S-S and C-S bonds

 $P_d = 15.4kW$ of microwave power is needed to dissociate all S-S and C-S bonds at 400 °C $(P_1 + Pd)$ 36.3 kW

$$P_t = \frac{(P_h + Pd)}{70\%} = \frac{36.3 \, kW}{70\%} = 51.8 \, kW$$

total microwave power consumption (if 70% efficiency is achieved)

Cavity spec

Input data

• modular build of an applicator to make the system extendable

(width: 1.0m, height: 0.3m, length: 2.5m)

- stainless-steel conveyor belt with the load supplied via special oil containers
- cavity made of a low-carbon stainless steel (1.05×10⁶ S/m)
- gas discharging pipes at the side walls (suppress MW leakage)
- tires cut into ca. 100mm scraps and evenly spread on the belt
- no leakage chokes due to external gaseous chamber

Cavity model

Alternate orientation of consecutive waveguides increases isolation between

EM model

- The size of a model: **16** million FDTD cells
- Minimum cell size: $a = 2 \text{mm} (35-60 \text{ cells}/\lambda)$
- Simulation time: ca. 1 minute
- Waveguide sources per section: 24

Feeding waveguides

- Waveguide launchers as recommended by the magnetrons' vendor
- Alumina plates (99.5% Al₂O₃) to separate magnetrons from a gaseous section
- Two adjustable screws (\$\phi\$ = 20mm)
 for waveguide tuning
- Tuning in cold conditions

OM75P technical specification

Discharging pipes

• The bunch of pipes discharging produced gases

mounted in several locations along the cavity

• Pipes are L = 100 mm long to suppress EM leakage (evanescent mode)

Power balance

- [S] parameters are not appropriate measure of power balance in a multi-source network
- Instead, *\[Gamma]* should be measured at each source (with all the sources operating simultaneously)

Tests

- 24 waveguides in each of 3 conveyor sections
- Temperature: 380 °C (assumed: 380 °C)
- Throughput: 150 kg/h (computed: 200 kg/h)
- Outcome: solid carbon pieces, oil ingredients

Conclusion

Microwave devulcanization of car tires can be

one of energy-efficient recycling solutions

• Efficiency of 3 kg/h/kW has been achieved

• The outcome is: carbon and sulphur

Thank you for the attention!

For more details, please come & see us

